RES-J

Methods

RES-J Methods

Methods

- ADJUST
- BALANCE
- LAGK
- MAXDECREASE
- MAXINCREASE
- MAXSTAGE
- RAINEVAP

- SETMIN
- SETRELEASE
- SETSUM
- SETWITHDRAW
- SPILLWAY

RES-J Adjust Method Parameters

The ADJUST method uses observed instantaneous discharges, mean discharges, and pool elevation values to adjust the simulated values to be consistent with the observations.

- Input time series
- Number of time steps for blending from an observed value
- Simulated pool is adjusted at each time step
- Consider a feature to adjust only the carryover values

Adjust Method Example

ADJUST WINSTON WINSTON ADJUST

OBSERVEDPOOL WIN_OBS_POOL

BLENDTS 5

ENDADJUST

Balance Method Parameters

The BALANCE method computes reservoir releases by balancing the available storage among multiple reservoirs.

- Option to balance by volume or percent of flood storage
- Minimum and maximum pool elevations for each reservoir
- Minimum release for each reservoir

Balance Method Example

BALANCE Madden Mad Gat Bal

VOLUME

RESERVOIR Gatun

VALUES LOWER POOL 135

UPPER POOL 140

MINRELEASE 12.4

ENDVALUES

ENDRESERVOIR

RESERVOIR Madden

VALUES LOWER STORAGE 1200000

UPPER STORAGE 1900000

MINRELEASE 11.8

ENDVALUES

ENDRESERVOIR

ENDBALANCE

RES-J LAGK Method Parameters

The LAGK method performs reach routing using the Lag and K routing procedure.

- Lag time in hours
- K coefficient (constant or a table of outflow versus K)
- Inflow carryover information
- ▲ LAG-K is applicable only to reach components
- useful for constructing valid networks; permitting operations based on downstream outcomes.

LAGK Method Example

```
LAGK WINSTON ST_MDKR2
LAG 12
K 7
COINFLOW
VALUES
1000
1000
1000
ENDVALUES
ENDCOINFLOW
ENDLAGK
```


MAXDECREASE/MAXINCREASE Method Parameters

- The MAXDECREASE / MAXINCREASE method limits the maximum decrease / increase in reservoir release from one time-step to the next
- MAXDECREASE Maximum allowable decrease in flow (per time step)
- MAXINCREASE Maximum allowable increase in flow (per time step)

MAXDECREASE/MAXINCREASE Method Example

```
MAXDECREASE WESTOVER WEST DECR
             400.
  DECREASE
ENDMAXDECREASE
MAXINCREASE
             WESTOVER WEST INC
             100.
  INCREASE
ENDMAXINCREASE
RULES
[WESTOVER.POOL < 1241.7]
  :: MAXINCREASE WEST INC
```

Maxincrease Method Example

MAXSTAGE Method Parameters

The MAXSTAGE method computes a restricted reservoir release to control the stage at a downstream control point

- Table of rating curve values
- Maximum allowable stage at the downstream control point
- Minimum allowable reservoir release
- Convergence criterion
- Downstream node identifier
- Maximum number of iterations for solving

MAXSTAGE Method Example

MAXSTAGE Method Example

MAXSTAGE WINSTON ST MLRC2 MLRC2 RATING **TABLE** 50 200 10 450 15 1100 20 3000 **ENDTABLE** MAXIMUMSTAGE 16.1 **MINRELEASE** 250 DSCONTROL MLRC2 GAGE **MAXITERATIONS** 15 **ENDMAXSTAGE**

RAINEVAP Method Parameters

The RAINEVAP method computes the change in reservoir storage resulting from rain and evaporation occurring over the lake surface.

- Time series identifier for observed evaporation and observed rainfall
- Table of average evaporation values by date
- Optional diurnal distribution of daily evaporation
- Loss is computed based on reservoir surface area at beginning of time-step

RAINEVAP Method Example

```
RAINEVAP WINSTON WN_RAINEV
PRECIP
TSINPUT ObservedPrecip WIN_MAP
ENDPRECIP
EVAP
VALUES 01/01 0.13
04/01 0.20
07/01 0.25 0.3 0.3 0.25 0.15
10/01 0.18
ENDVALUES
ENDEVAP
ENDRAINEVAP
```


SETELEVATION Method Parameters

The SETELEVATION method computes a reservoir release in order to achieve a prescribed reservoir pool elevation. The elevation can be specified in a table as a function of date or can be given as a time series.

- Observed pool elevation time series
- Reservoir rule curve information in date/elevation pairs
- Period for blending between rule curve values and time series values
- Period for blending between rule curve dates
- Interpolation option
- (interpolation and date blending are mutually exclusive)

SETELEVATION Method Example

```
SETELEVATION WINSTON
                      WIN FLOOD
               OBSERVEDPOOL
                              WIN POOL
      TSINPUT
      VALUES
             01/01 205.0
             04/01 208.0
             07/01 210.0
             10/01 215.0
      ENDVALUES
                           30
      BLENDTBL
                    8
      BLENDTS
ENDSETELEVATION
```

SETMAX / SETMIN Method Parameters

The SETMAX / SETMIN methods selects the maximum / minimum release (or withdrawal) from a list of previously computed methods.

 Other method identifiers from which to compute maximum / minimum output variable

SETMAX / SETMIN Method Example

SETMIN WINSTON WIN_MIN

SETRELEASE WINSTON WIN.FLOOD

SETELEVATION WINSTON WIN RULE

MAXSTAGE WINSTON ST MLRC2

ENDSETMIN

SETMAX WINSTON WIN MAX

SETRELEASE WINSTON WIN_SPILL

SETMIN WINSTON WIN_MIN

ENDSETMAX

SETRELEASE Method Parameters

The SETRELEASE method computes reservoir release based on a table that specifies release as a function of date and pool elevation, or as a prescribed release entered as a time series.

- Observed release time series
- Table of elevation/release values by date
- Period for blending between table values and time series values
- Period for blending between elevation/release table dates
- Interpolation between elevations and/or dates

SETRELEASE Method Example

SETRELEASE	Madden		Power_	Rel		
TSINPUT		Observed_Rel			MAD_OBS_POWER	
VALUES						
ELEV	215	220	230	240	250	ENDELEV
01/01	300	300	350	400	500	
04/01	310	310	375	4 50	550	
07/01	350	400	450	500	750	
10/01	310	310	375	450	550	
ENDVALUES						
BLENDTBL		0				
BLENDTS		0				
NORMAL						
ENDSETRELEASE						

SETSUM Method Parameters

The SETSUM method computes reservoir release (or withdrawal) as the sum of previously computed reservoir release (or withdrawal) methods.

- Method identifiers from which to compute sum of output variables
- Valid methods are:
 - SETMAX
 - SETMIN
 - SETRELEASE
 - SETWITHDRAW

SETSUM Method Example

SETSUM Madden Power&Spills

SETRELEASE Madden Power

SETRELEASE Madden Spill

ENDSETSUM

SETWITHDRAW Method Parameters

The SETWITHDRAW method computes reservoir withdrawal based on a table that specifies withdrawal as a function of date and pool elevations, or as a prescribed withdrawal entered as a time series.

- Observed withdrawal time series
- Table of elevation/withdrawal values by date
- Period for blending between elevation/withdrawal table dates
- Period for blending between elevation/withdrawal table values and time series values

SETWITHDRAW Method Example

```
Madden
                           Muni
SETWITHDRAW
                    Observed Muni Mad Muni
      TSINPUT
      VALUES
             ELEV 80.0
                           ENDELEV
             01/01 125
             04/01 130
             07/01 120
             10/01 310
      ENDVALUES
      BLEND
      BLENDTS
      NORMAL
ENDSETWITHDRAW
```

SPILLWAY Method Parameters

The SPILLWAY method computes reservoir discharge as a function of reservoir elevation when the elevation exceeds the reservoir spillway crest.

- Table of elevation verses spill
- One elevation spill pair per line
- Specify the number of integer value intervals the simulation time step should be sub-divided into to enable pseudoimplicit solution of water balance equation.

SPILLWAY Method Example

```
SPILLWAY LOYALHANNA TEST
      TABLE ELEV SPILL
       915.9 0.0
       916.0 15.0
       922.0 725.0
       924.0 775.0
       925.0 850.0
       926.0 935.0
       928.0 1110.0
       985.0 108000.
      ENDTABLE
      INTERVALS 12
      INITIALSPILL 0
ENDSPILLWAY
```